Little red dots as young supermassive black holes in dense ionized cocoons

Greene, J. E. et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophys. J. 964, 39 (2024).
Google Scholar
Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ~ 5 Revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).
Google Scholar
Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4-7: detection of 10 faint AGNs with MBH ~ 106–108 M⊙ and their host galaxy properties. Astrophys. J. 959, 39 (2023).
Google Scholar
Maiolino, R. et al. JADES: the diverse population of infant black holes at 4 < z < 11: merging, tiny, poor, but mighty. Astron. Astrophys. 691, A145 (2024).
Google Scholar
Baggen, J. F. W. et al. The small sizes and high implied densities of “Little Red Dots” with Balmer breaks could explain their broad emission lines without an active galactic nucleus. Astrophys. J. Lett. 977, L13 (2024).
Google Scholar
Akins, H. B. et al. COSMOS-Web: the overabundance and physical nature of “little red dots”—implications for early galaxy and SMBH assembly. Astrophys. J. 991, 37 (2025).
Google Scholar
Ananna, T. T., Bogdán, Á., Kovács, O. E., Natarajan, P. & Hickox, R. C. X-ray view of little red dots: do they host supermassive black holes? Astrophys. J. Lett. 969, L18 (2024).
Google Scholar
Kokubo, M. & Harikane, Y. Challenging the AGN scenario for JWST/NIRSpec broad Hα emitters/little red dots in light of non-detection of NIRCam photometric variability and X-ray. Preprint at arxiv.org/abs/2407.04777 (2024).
Yue, M. et al. Stacking X-ray observations of “little red dots”: implications for their active galactic nucleus properties. Astrophys. J. Lett. 974, L26 (2024).
Google Scholar
Maiolino, R. et al. JWST meets Chandra: a large population of Compton thick, feedback-free, and intrinsically X-ray weak AGN, with a sprinkle of SNe. Mon. Not. R. Astron. Soc. 538, 1921–1943 (2025).
Google Scholar
Mazzolari, G. et al. The radio properties of the JWST-discovered AGN. Preprint at arxiv.org/abs/2412.04224 (2024).
Gloudemans, A. J. et al. Another piece to the puzzle: radio detection of a JWST-detected active galactic nucleus candidate. Astrophys. J. 986, 130 (2025).
Google Scholar
Setton, D. J. et al. A confirmed deficit of hot and cold dust emission in the most luminous little red dots. Astrophys. J. Lett. 991, L10 (2025).
Google Scholar
Inayoshi, K. & Maiolino, R. Extremely dense gas around little red dots and high-redshift active galactic nuclei: a nonstellar origin of the Balmer break and absorption features. Astrophys. J. Lett. 980, L27 (2025).
Google Scholar
Ji, X. et al. BlackTHUNDER—a non-stellar Balmer break in a black hole-dominated little red dot at z = 7.04. Mon. Not. R. Astron. Soc. 544, 3900–3935 (2025).
Kocevski, D. D. et al. The rise of faint, red active galactic nuclei at z > 4: a sample of little red dots in the JWST extragalactic legacy fields. Astrophys. J. 986, 126 (2025).
Google Scholar
Juodžbalis, I. et al. A dormant overmassive black hole in the early Universe. Nature 636, 594–597 (2024).
Google Scholar
de Graaff, A. et al. RUBIES: a complete census of the bright and red distant Universe with JWST/NIRSpec. Astron. Astrophys. 697, A189 (2025).
Google Scholar
Heintz, K. E. et al. The JWST-PRIMAL archival survey: a JWST/NIRSpec reference sample for the physical properties and Lyman-α absorption and emission of ~600 galaxies at z = 5.0 − 13.4. Astron. Astrophys. 693, A60 (2025).
Google Scholar
Killi, M. et al. Deciphering the JWST spectrum of a ‘little red dot’ at z ~ 4.53: an obscured AGN and its star-forming host. Astron. Astrophys. 691, A52 (2024).
Google Scholar
Setton, D. J. et al. Little red dots at an inflection point: ubiquitous “v-shaped” turnover consistently occurs at the Balmer limit. Preprint at arxiv.org/abs/2411.03424 (2024).
Lambrides, E. et al. The case for super-Eddington accretion: connecting weak X-ray and UV line emission in JWST broad-line AGN during the first Gyr of cosmic time. Preprint at https://arxiv.org/abs/2409.13047 (2024).
Tang, M. et al. JWST/NIRSpec observations of high-ionization emission lines in galaxies at high redshift. Astrophys. J. 991, 217 (2025).
Google Scholar
Weymann, R. J. Electron-scattering line profiles in nuclei of Seyfert galaxies. Astrophys. J. 160, 31 (1970).
Google Scholar
Laor, A. Evidence for line broadening by electron scattering in the broad-line region of NGC 4395. Astrophys. J. 643, 112–119 (2006).
Google Scholar
Huang, C. & Chevalier, R. A. Electron scattering wings on lines in interacting supernovae. Mon. Not. R. Astron. Soc. 475, 1261–1273 (2018).
Google Scholar
Kollatschny, W. & Zetzl, M. The shape of broad-line profiles in active galactic nuclei. Astron. Astrophys. 549, A100 (2013).
Google Scholar
Storchi-Bergmann, T. et al. Double-peaked profiles: ubiquitous signatures of disks in the broad emission lines of active galactic nuclei. Astrophys. J. 835, 236 (2017).
Google Scholar
Juodžbalis, I. et al. JADES – the Rosetta stone of JWST-discovered AGN: deciphering the intriguing nature of early AGN. Mon. Not. R. Astron. Soc. 535, 853–873 (2024).
Google Scholar
Castor, J. I. & Lamers, H. J. G. L. M. An atlas of theoretical P Cygni profiles. Astrophys. J. Suppl. Ser. 39, 481–511 (1979).
Google Scholar
Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).
Google Scholar
Gieles, M., Padoan, P., Charbonnel, C., Vink, J. S. & Ramírez-Galeano, L. Globular cluster formation from inertial inflows: accreting extremely massive stars as the origin of abundance anomalies. Mon. Not. R. Astron. Soc. 544, 483–512 (2025).
Cho, H. et al. The Seoul National University AGN Monitoring Project. IV. Hα reverberation mapping of six AGNs and the Hα size-luminosity relation. Astrophys. J. 953, 142 (2023).
Google Scholar
Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).
Google Scholar
Watson, D. et al. Helium in natal H ii regions: the origin of the X-ray absorption in gamma-ray burst afterglows. Astrophys. J. 768, 23 (2013).
Google Scholar
Malizia, A. et al. First high-energy observations of narrow-line Seyfert 1s with INTEGRAL/IBIS. Mon. Not. R. Astron. Soc. 389, 1360–1366 (2008).
Google Scholar
Done, C., Davis, S. W., Jin, C., Blaes, O. & Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848–1860 (2012).
Google Scholar
Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).
Google Scholar
Katz, H. et al. 21 Balmer Jump Street: the nebular continuum at high redshift and implications for the bright galaxy problem, UV continuum slopes, and early stellar populations. Open J. Astrophys. 8, 104 (2025).
Google Scholar
Strateva, I. V. et al. Double-peaked low-ionization emission lines in active galactic nuclei. Astron. J. 126, 1720–1749 (2003).
Google Scholar
de Graaff, A. et al. A remarkable ruby: absorption in dense gas, rather than evolved stars, drives the extreme Balmer break of a little red dot at z = 3.5. Astron. Astrophys. 701, A168 (2025).
Google Scholar
Naidu, R. P. et al. A “black hole star” reveals the remarkable gas-enshrouded hearts of the little red dots. Preprint at arxiv.org/abs/2503.16596 (2025).
Juodžbalis, I. et al. JADES: comprehensive census of broad-line AGN from reionization to cosmic noon revealed by JWST. Preprint at arxiv.org/abs/2504.03551 (2025).
Netzer, H. Physical conditions in active nuclei-I. The Balmer decrement. Mon. Not. R. Astron. Soc. 171, 395–406 (1975).
Google Scholar
Nikopoulos, G. P. et al. Evidence of violation of case B recombination in little red dots. Preprint at arxiv.org/abs/2510.06362 (2025).
D’Eugenio, F. et al. Irony at z = 6.68: a bright AGN with forbidden Fe emission and multi-component Balmer absorption. Preprint at arxiv.org/abs/2510.00101 (2025).
Fujimoto, S. et al. A dusty compact object bridging galaxies and quasars at cosmic dawn. Nature 604, 261–265 (2022).
Google Scholar
Pounds, K. A., Done, C. & Osborne, J. P. RE 1034+39: a high-state Seyfert galaxy? Mon. Not. R. Astron. Soc. 277, L5–L10 (1995).
Google Scholar
Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).
Google Scholar
Akins, H. B. et al. Tentative detection of neutral gas in a little red dot at z = 4.46. Preprint at https://arxiv.org/abs/2503.00998 (2025).
Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Google Scholar
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).
Google Scholar
Finkelstein, S. L. et al. CEERS key paper. I. An early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. Lett. 946, L13 (2023).
Google Scholar
Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at arxiv.org/abs/2306.02465 (2023).
Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).
Google Scholar
D’Eugenio, F. et al. JADES Data Release 3: NIRSpec/microshutter assembly spectroscopy for 4000 galaxies in the GOODS fields. Astrophys. J. Suppl. Ser. 277, 4 (2025).
Google Scholar
Arrabal Haro, P. et al. Environmental effects on Galaxy Evolution in a z = 5.2 Proto-cluster. Cycle 1, JWST Proposal 2674 (2023).
Eisenstein, D. J. et al. The JADES origins field: a new JWST deep field in the JADES second NIRCam data release. Preprint at arxiv.org/abs/2310.12340 (2023).
Nelson, E. et al. Extremely Massive Galaxies in the Early Universe: A Challenge to Lambda-CDM? Cycle 2, ID. JWST Proposal 4106 (2023).
Glazebrook, K. et al. How Many Quiescent Galaxies Are There at 3. Cycle 1, JWST Proposal 2565 (2021).
Arrabal Haro, P. et al. Spectroscopic Follow-up of Ultra-High-z Candidates in CEERS: Characterizing True z > 12 Galaxies and z 4–7 Interlopers in Preparation for JWST Cycle 2. Cycle 1, ID. JWST Proposal 2750 (2022).
Egami, E. et al. JWST NIRSpec/NIRCam Follow-Up of the High-Redshift Transients Discovered in the GOODS-S JADES-Deep Field. Cycle 2, ID. JWST Proposal 6541 (2023).
Brammer, G. msaexp: NIRSpec analyis tools. v.0.6.17. Zenodo. https://doi.org/10.5281/zenodo.8319596 (2023).
Hviding, R. E. et al. RUBIES: a spectroscopic census of little red dots; all v-shaped point sources have broad lines. Astron. Astrophys. 702, A57 (2025).
Salvatier, J., Wiecki, T. & Fonnesbeck, C. Probabilistic programming in Python using pymc. PeerJ Comp. Sci. 2, e55 (2016).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Google Scholar
de Graaff, A. et al. Ionised gas kinematics and dynamical masses of z ≳ 6 galaxies from JADES/NIRSpec high-resolution spectroscopy. Astron. Astrophys. 684, A87 (2024).
Google Scholar
Dojčinović, I., Kovačević-Dojčinović, J. & Popović, L. Č. The flux ratio of the (N II) λλ 6548, 6583 Å lines in sample of active galactic nuclei type 2. Adv. Space Res. 71, 1219–1226 (2023).
Google Scholar
Goad, M. R., Korista, K. T. & Ruff, A. J. The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus. Mon. Not. R. Astron. Soc. 426, 3086–3111 (2012).
Google Scholar
D’Eugenio, F. et al. BlackTHUNDER strikes twice: rest-frame Balmer-line absorption and high Eddington accretion rate in a little red dot at z = 7.04. Preprint at arxiv.org/abs/2503.11752 (2025).
Eracleous, M. & Halpern, J. P. Double-peaked emission lines in active galactic nuclei. Astrophys. J. Suppl. Ser. 90, 1 (1994).
Google Scholar
Zheng, W., Binette, L. & Sulentic, J. W. A double-stream model for line profiles. Astrophys. J. 365, 115 (1990).
Google Scholar
Zhu, L., Zhang, S. N. & Tang, S. Evidence for an intermediate line region in active galactic nuclei’s inner torus region and its evolution from narrow to broad line Seyfert I galaxies. Astrophys. J. 700, 1173–1189 (2009).
Google Scholar
Puerto-Sánchez, C. et al. Large-scale dual AGN in large-scale cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 536, 3016–3040 (2025).
Google Scholar
Santos, D. J. D. et al. Spectroscopic active galactic nucleus survey at z ~ 2 with NTT/SOFI for GRAVITY+ observations. Astron. Astrophys. 696, A30 (2025).
Google Scholar
Grier, C. J. et al. Stellar velocity dispersion measurements in high-luminosity quasar hosts and implications for the AGN black hole mass scale. Astrophys. J. 773, 90 (2013).
Google Scholar
Bennert, V. N. et al. A local baseline of the black hole mass scaling relations for active galaxies. IV. Correlations between MBH and host galaxy σ, stellar mass, and luminosity. Astrophys. J. 921, 36 (2021).
Google Scholar
Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).
Google Scholar
Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013).
Google Scholar
Dunlop, J. S. et al. PRIMER: Public Release IMaging for Extragalactic Research. Cycle 1, JWST Proposal 1837 (2021).
Egami, E. et al. Complete NIRCam Grism Redshift Survey (CONGRESS). Cycle 2, JWST Proposal 3577 (2023).
Brammer, G. grizli. GitHub. github.com/gbrammer/grizli (2023).
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Google Scholar
Arnaud, K. A. XSPEC: the first ten years. In Proc. Astronomical Data Analysis Software and Systems V, Vol. 101 of Astronomical Society of the Pacific Conference Series (eds Jacoby, G. H. & Barnes, J.), 17 (Astronomical Society of the Pacific, 1996).
Kumar, R., Carroll, C., Hartikainen, A. & Martin, O. ArviZ a unified library for exploratory analysis of Bayesian models in Python. J. Open Source Softw. 4, 1143 (2019).
Google Scholar
Astropy Collaboration. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Google Scholar
Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Google Scholar
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Harris, C. R. et al. Array programming with numpy. Nature 585, 357–362 (2020).
Google Scholar
pandas development team, T. pandas-dev/pandas: Pandas. Zenodo. https://doi.org/10.5281/zenodo.3509134 (2020).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Jeffery, D. J. & Branch, D. In Supernovae, Jerusalem Winter School for Theoretical Physics (eds Wheeler, J. C. et al.) Vol. 6, 149 (World Scientific, 1990).
Thomas, R. C., Nugent, P. E. & Meza, J. C. SYNAPPS: data-driven analysis for supernova spectroscopy. Publ. Astron. Soc. Pac. 123, 237 (2011).
Google Scholar
Sneppen, A. et al. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 614, 436–439 (2023).
Google Scholar
Sneppen, A. et al. Measuring the Hubble constant with kilonovae using the expanding photosphere method. Astron. Astrophys. 678, A14 (2023).
Google Scholar
Kokorev, V. et al. A census of photometrically selected little red dots at 4 < z < 9 in JWST blank fields. Astrophys. J. 968, 38 (2024).
Google Scholar
Wang, B. et al. RUBIES: evolved stellar populations with extended formation histories at z ~ 7–8 in candidate massive galaxies identified with JWST/NIRSpec. Astrophys. J. Lett. 969, L13 (2024).
Google Scholar
تنويه من موقعنا
تم جلب هذا المحتوى بشكل آلي من المصدر:
yalebnan.org
بتاريخ: 2026-01-16 00:06:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.


